
Endpoint Security
Evaluation

June 2017

2

Evaluation, in the endpoint security domain, has
been undergoing rapid changes these past few
years. In endpoint security solutions, evaluation
has two main differentiators: detection rate
and false positives. In most of the cases, the
measurement of the detection rate test relies
mostly on known malware that can be easily
retrieved from public or private repositories.

Endpoint security solutions are progressively
improving the accuracy of their detection
rates, mainly on known malware, based on a
wide range of capabilities: blacklists of hashes,
signatures, heuristics, machine learning-based
models and nowadays, also with deep learning-
based models that scan files (statically) or look
at the behavior of the processes or the machine
(dynamically).

Having those capabilities in place raises, of
course, the option that endpoint security
solutions will perform well on such datasets
from the wild; it is enough to sign them all and
consequently, reach 100% detection.

Two points are important: the first is that the
new malware, which can be signed easily and
rapidly, was actually unknown prior to the
publication. Therefore, if an endpoint security
solution fails on this malware, it fails both on
known and unknown. Surprisingly, during tests,
we see that some of the most common solutions
are failing easily on new threats.

Introduction

The second point is that next-generation
endpoint security solutions are targeted to
detect unknown malware, which other non-
next-generation solutions, might fail detection.
Therefore, the test case should be different
when testing next-generation solutions by using
real unknown malware where there is a smaller
chance for them to be signed by any means.

Let’s talk a bit about the real challenge here:
unknown malware and how the solutions act
when they first face it.

3

The number of unknown malware is constantly increasing. It is more common that new malware
families are created (based on open-source malware or on leaked source codes – intentionally
and unintentionally), new versions of current malware families are released (with new features
or new sophisticated evasion techniques in parallel with the improvement of the detection
capabilities) or just new mutations of known malware (that have already been signed). Therefore,
these new variants, which are generated easily and rapidly, bypass current existing signatures.

There are a few different ways for creating mutations:

Unknown Malware

Changing the Hash
A small change in the file itself, even by
appending a byte, will change the hash of
the file. Endpoint security solutions that
rely on hash blacklisting (cloud reputation
services in most of the cases) are vulnerable
to such “mutations” because their existing
hashing signatures will not match those new
mutations’ hashes.

* For more details, please see note 3 in Bibliography

Binary files can be packed with a packer
(also known as “compressor”, “crypter”,
“protector”, or even “SFX” – selfextractors)
that basically provide a generic layer on the
original file, a “mask”, so while running it, its
stub will start the unpacking process that will
be revealed and run later in the original code.

Packing

4

The unpacking can be achieved by several ways: starting from dropping the unpacked files to
the disk, mapping and loading the entire original file in the memory, mapping only sections,
or even doing that in more than a one shot by unpacking more and more areas during the
execution of the binary. The original code/file can be either compressed, encoded or encrypted.

There are many types of packers, and in most of the cases they are used to protect the reading
of the original source code statically; to compress the size of the binary, or to protect it from
piracy. Those needs are usually required by legitimate software as well, and consequently,
many legitimate software use packers too. UPX, for example, is one of the most common
packers in the wild. If we examine the distribution of UPX-packed files, it seems that there is a
ratio of 1:2.5 for benign:malicious files. Although there are a few security vendors that define
packed files with specific packers as malicious, this kind of heuristic creates false positives on
those legitimate packed files. Therefore, the ideal is to be able to determine whether the file is
malicious or not without such robust heuristics.

Even though some packers might create a new variant each time the original file is packed, some
of them will provide the same, new variant. Therefore, to achieve the purpose of generating a
big number of mutations automatically, packing the original file won’t necessarily help, as for
each packing iteration the same packed file will be generated. Attackers usually pack the files
not as an automatic mutations creation mechanism, but to provide another evasion layer.

In addition, the output, packed file from many packers, is reversible. This means it is possible to
unpack it easily without executing the packed file. Security vendors usually do this to scan the
“clean”, unpacked version of the file statically. Having said that, unique and “zero-day” packers
exist. They are called “FUD” – fully undetectable – where the packing technique is still unknown
and has not yet been reversed.

5

New Variants – Modifications of the
Malware Binary
New variants are usually created by
modifications of the original malware binary
itself. This is done on the features that
security vendors might sign, starting from
hardcoded strings, IP/domain names of C&C
servers, registry keys, file paths, metadata or
even mutexes, certificates, offsets, as well
as file extensions that are correlated to the
encrypted files by ransomware. It can also
be on the code itself, with techniques such
as polymorphism, in which the opcodes are
changed into other ones while keeping the
original functionality; or metamorphism, in
which useless parts of code are added to
confuse and change the order of the structures.

 New Malware Families
Apart from the abovementioned methods
that attackers might use to create such
mutations and other variants of the same
malware, new versions of existing malware
or new malware families can be generated
for the same purpose of evasion. A new
version of an existing malware can be
defined with new features that the malware
provides, to make its business logic different.
Another way can be by applying new attack
vectors or evasion techniques to bypass the
current signatures of the endpoint security
solutions. Additionally, a new malware
family can be written from scratch, or be
based on a source code of another malware.
For example, HiddenTear or EDA2 are
opensource ransomware on which many new
ransomware families are based.

6

What is the Recommended Method to
Evaluate Endpoint Security Solutions?

At first glance, it is important to verify that the
solution does not rely only on hash blacklisting,
because it is easy to bypass in the real world.
To change the hash, appending one byte is
enough by using the following Linux command:
truncate -s +<amount of bytes> <file_to_mutate>
It is also important to verify that the solution
can detect new malware. Even though such
samples are already known, until recently
they have not been discovered. As such, if it
takes time for a solution to detect such a new
family, it is not good.

For this purpose, there are plenty of public
repositories with malware. However, bear in
mind that those repositories usually contain
a lot of non-malware files, whether benign
or potentially unwanted applications (which
might be considered with a lower priority
in terms of the evaluation). Therefore, you
cannot rely by default that their classification
of files as malware is correct.

Alternatively, you can bundle such a
repository by yourself, by looking for samples
from publications over the Internet, or from
threat intelligence feeds such as AlientVault
OTX. You also need to keep in mind that it
is important to make it as varied as possible
– bundle as many samples from as many
different families as possible, so that the
results are representative.

In addition, the main goal is to test new,
unseen malware. Creating mutations based
on available source code of malware is a
great option to evaluate endpoint security
solutions.

Deep Instinct and Detection of Unknown
Malware
Deep Instinct provides unmatched detection
and prevention of any type of malware,
using deep learning to leverage its detection
capabilities. Since we do not use any type of
signatures, Deep Instinct is immune to hash
modifications. We also successfully classify
packed files – whether using simple and
known ones or even FUDs.

During our training phase, we add “noise”,
which changes the raw data from the files
we feed into the algorithm, in order to
automatically generate slight “mutations”,
which are fed in each training cycle during
our training phase. This concept immunes
Deep Instinct against the modifications that
are applied to the different variants, such as
strings or even polymorphism.

Regarding new malware, those are usually
developed based on other malware source
code, or at least based on some malicious
piece of code, providing the ability to detect
them as well.

Contact us for assistance with bundling
the evaluation test case, with the methods
described above, on both known and unseen,
new malware using our propriety mutation
tool.

7

Deep Instinct is an omni-cybersecurity platform that helps companies and organizations
protect themselves against zero-day, APT and ransomware attacks with unmatched accuracy.
By providing deep learning predictive capabilities, and a solution that is based on a proprietary
deep learning framework Deep Instinct is revolutionizing cybersecurity. Deep Instinct’s solution
provides comprehensive defense designed to protect against known and unknown malware
in real-time, across endpoints, servers, and mobile devices. Deep learning’s capabilities of
identifying malware from any data source results in comprehensive protection on any device
and operating system.

© Deep Instinct Ltd. This document contains proprietary information. Unauthorized use, duplication, disclosure or

modification of this document in whole or in part without written consent of Deep Instinct Ltd.. is strictly prohibited. Deep

Instinct has invested significant efforts to make this research as updated as possible.

about deep instinct

To learn more about Deep Instinct capabilities, get a personal
demo from one of our experts

www.deepinstinct.com

Get a Demo

https://www.deepinstinct.com/request-a-demo/

